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\qr15 ABSTRACT 

FCO has been obtained i n  a CO and i n  an A r  matrix a t  14-20°K by 

the reaction with CO of F atoms produced upon photolysis of OF2 o r  o f  

t-N2F2, as w e l l  as by the photolysis of  F2C0 o r  of HFCO. 

vibrat ional  fundamentals of  the  f r ee  radical  FCO appear a t  1855, 1018, 

and 626 cm-’. 

infrared ident i f ica t ion  of FCO. 

The three 

Experiments employing 13C160 and l 2 C l 8 O  confirm the 

I n  u l t r av io l e t  absorption studies on 

matrix-isolated FCO an extensive ser ies  of bands has been observed 

between 2200 and 34.00 A. The mos t  prominent progression i n  t h i s  system 

involves bands spaced a t  approximately 650 cm-I intervals .  It i s  l i k e l y  

t h a t  this progression i s  associated with the upper state bending mode 

of FCO. F2C0 and (FC0l2 a re  a l so  produced i n  the reaction of F atoms 

with a CO matrix, and features  o f  t h e i r  ‘infrared spectra are reported. 

A supplementary observation of the  u l t rav io le t  absorption spectrum of 

gaseous F2C0 shows a band system between 1800 and 2100 A ,  with spacings 

of approximately 1700 cm-’. 

the n + d+ carbonyl t ransi t ion.  

Presumably this system i n  contributed by 

The approximate geometric s t ructure  

and the  nature of the chemical bonds o f  FCO are discussed, and the 

mechanisms o f  formation of t h i s  species and of the other observed 

products are  considered. An estimate o f  the thermodynamic properties 

of FCO i s  given. 

“Work supported i n  p a r t  by NASA. 



INTRODUCTION 

The formyl rad ica l ,  HCO, has been produced by Ewing, Thompson, and 

Pimentel(l) i n  suf f ic ien t  concentration f o r  d i r e c t  study of i t s  vibra- 

t iona l  spectrum. 

use of the react ive matrix technique. 

of H B r  o r  o f  H I  were found t o  react  with the 03 matrix, with s tab i l iza-  

t i o n  o f  the highly reactive reaction intermediate HCO. 

Milligan and Jacox(*) have extended t h i s  work and have succeeded i n  

resolving several problems associated with the e a r l i e r  vibrat ional  

assignments f o r  HCO and DCO. 

Crucial t o  the success of these experiments was t h e i r  

H atoms produced by the photolysis 

Recently, 

I n  the course of these and other  s tudies ,  i t  has been found t h a t  

H atoms have considerable mobility i n  CO and i n  i n e r t  gas matrices a t  

cryogenic temperatures. The observations of Milligan and Jacox' ') on 

the behavior of the infrared absorptions assigned t o  N C 1  and NBr when 

these species are subjected t o  prolonged photolysis i n  a matrix environment 

suggest t h a t  C 1  and Br atoms may a l s o  be able  t o  undergo a t  l ea s t  

l imited diffusion i n  solids.  Given a su i tab le  source o f  halogen atoms, 

i t  appeared feas ib le  to  undertake experiments analogous t o  those on HCO, 

designed t o  produce the various haloformyl rad ica ls  i n  an environment 

suitable f o r  spectroscopic study. 

AS the  following discussion will show, several  photolytic sources 

o f  F atoms have been found, and FCO has been i so la ted  i n  a matrix en- 

vironment i n  suf f ic ien t  concentration t o  permit assignment of all three 

of i t s  vibrat ional  fundamentals. 
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EXPERIMENTAL DETAILS 

Four photolytic sources of F at- and/or of FCO were used i n  the 

w production of E O .  t-N2F2 (Air Products, Inc.) was found t o  contain a 

small amount of NF3, which did not appear to  photolyze under the condi- 

t ione of the present experiments. 

Allied Chemical Corp.) was specified as being 99.2% OF2’ with small 

OF2 (General Chemical Division, 

amounts of 02, C 0 2 ,  and CF4 a6 the pr incipal  impurities. F 2 C 0  was pre- 

pared by the d i r ec t  reaction of an Ar:F2 = 10 mixture with gaseous CO. 

The product was freed of Ar by passage through a t rap  coaled with l iquid 

nitrogen. 

and Goldstein . 
HCOF was prepared by the procedure described by Morgan, Staats ,  

(4 1 

Ar and CO (Matheson Co., Inc., C. P. Grade) were used without 

fur ther  purif icat ion,  except for passage through a P205 column t o  remove 

t races  of water. CO enriched t o  56% 13C0 ,  as  well as CO enriched t o  9 0 %  

C Samples were prepared using stand- 

ard manometric procedures. 

ranged between 100 and 400 for the infrared observations. 

18 0 ,  were used i n  some experiments. 

Typical mole r a t i o s  CO: (F atom source) 

The u l t ra -  

v i o l e t  experiments employed a mole r a t i o  of 160. Experiments were a l so  

conducted on three-component systems, Ar:CO! (F atom rource). A typical  

mole r a t i o  for such a system is  200:2:1. Because of i t r  high reac t iv i ty ,  

it was necessary t o  suspend OF2 i n  an A r  matrix t o  use t h i s  material  as 

an F atam source. 

The cryostat. used i n  these experiments a re  similar t o  tha t  des- 

cribed by Milligan(5). 

window for  the infrared otudies and on a lithium fluoride window for 

Samples were condensed an a cerium iodide 

3 
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t h e  u l t r av io l e t  obeervat ions. 

A l l  of the infrared obsewations were made a t  14"K, the t r i p l e  

The u l t r av io l e t  observations were made a t  2OoK, point of hydrogen. 

The rad ia t ion  source for  photolysis was a medium-pressure mercury 

arc. For the infrared experiments, photolysis w a s  by d i r e c t  i r radia-  

t i o n  through a potassium bromide o r ,  in m o s t  experiments, a sodium 

chloride window, using a quartz focusing lens. To permit obsemations 

a t  wavelengths as  short  a t  1600 A, l i thium f luoride windows and a 

li thium fluoride lens were used for  the u l t r av io l e t  experiments. 

Infrared spectra  were recorded on a double-beam, prism-grating 

spectrometer (Beckman IR-9). Under the conditions of a typ ica l  ex- 

periment, the resolut ion and frequency accuracy are both appraximately 

1 cm 

(400-2000 cm-'). 

-1 i n  the spec t ra l  range of i n t e r e s t  for  the present observations 

The u l t r av io l e t  absorption spectrum was recorded with an evacuable 

scanning Ebert-Fastie monochromator(6). 

grat ing ruled with 1200 grooves per nun. 

(100 microns), the spec t ra l  resolut ion w a s  about 1 A, 

w a s  an end-on photomultiplier tube (EM1 No. 6255B) with a sodium 

sa l i cy la t e  coating. 

hydrogen discharge lamp with a "Suprasil" window, so t ha t  t he  wave- 

length region 1600-4000 A could r ead i ly  be scanned. 

This instrument has a plane 

With the slit widths used 

The detector  

"he background continuum w a s  prwided by a 

OBSERVATIONS 

The behavior of the infrared absorption spectrum of a typ ica l  
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COtt-N2F2 sample as  a function of 

i n  Table I. The rpectra recorded 

the duration of phatolysia is given 

in another typical  exparimeat a re  

reproduced i n  Figure I, Except for-ons weak abrorption, it harJ been 

possible t o  assign a l l  of the features appearing i n  there rpectra. Not 

recorded in Table I, but present in Fig. 1, are  features a t  895 and 

1027 an-', contributed by NF., impurity i n  the t-N2F2 and unchanged upon 

photolysis. In  addition, the 660 cm-' C02 peak has been omit ted,  as  

have been i ts  isotopical ly  rubsti tuted caunterpartlr i n  the l a t e r  discus- 

sion. 

sample, 

absorption during photolysis. 

It was d i f f i c u l t  t o  rmuve traces of C02 and of O2 f r m  the CO 

This mall O2 impurity accounts for  the growth i n  the COP 

Supplementary errperbents on the aystem 

CO2:t-N2F2 rhow no evidence for  the appearance of products e f  a photo- 

lytically-induced reaction. The broad, weak feature appearing in Fig. 1 
-1 near 1980 cm The po8sibi l i ty  t ha t  any 

of the  observed features are contributed by HCOF has been excluded by 

is a t-N2F2 canbination band. 

d i r e c t  observation of the infrared spectrum of t h i s  rubrtance i n  a CO 

matrix. 

suspended i n  CO, cumpared with the gar phsre npectrum af F2C0 reported 

Relatively s m a l l  matrix s h i f t s  have been observed for  F2C0 

by Nielsen, Burke, Woltz, and It is of sane i n t e r e s t  t o  note 

tha t  the Fenni resonance between v2 md 2vI of t h i r  apecies, indicated 

i n  the gas phase spectrum by a shoulder a t  1907 cm 

intense 1942 cm 

isolated i n  a CO matrix; abrorptionn of nearly equal i n t ens i ty  appear 

a t  1913 and 1941 cm-', Corresponding t o  the medium i n t e m i t y  gar phase 

absorptions of F2C0 a t  584 and a t  626 an-', a re l a t ive ly  thick film of 

-1 on the broad, very 

-1 band, is c lea r ly  resolved i n  the spectrum of F2C0 

5 



F2C0 suspended i n  CO is found t o  have absorptions of approximately equal 

i n t ens i ty  a t  585 and at 619.5 cm”. Both of these abrorptions a re  toa 

weak t o  appear i n  the experiment described by Table I, Tullock(8) has 

observed the most intense absorptions of gaseous oxalyl f luoride,  (FC0I2, 

a t  approximately 1110, 1:!63, 1862, and 1876 cm’l. 

absorptions appearing neer these frequencies have been assigned t o  t h i s  

species. The absorptions assigned t o  (FCO)2 near 1100 and 1270 cm-’ 

a re  doubled. Saksena e t  a d 9 )  have postulated the occurrence of c i s -  

t rans  isomerism i n  (C1CO>2 t o  explain ce r t a in  features  of the infrared 

and u l t rav io le t  spectrum of t h i s  species. The occurrence of c i s  and 

tram isomers would explain the doubling of the antisymmetric C-F 

Stretching mode of (FC0)2. 

may play an important ro l e  in the  appearance of t h i s  doubling. 

l a t e r  be shown, the behavior of the l e s B  intense absorption a t  676 c m  

i n  the  56% I3CO matrix experiments i s  appropriate t o  a species containing 

two carbon atoms, suggesting tha t  i t ,  too, should be assigned t o  (FC0)2. 

The intense product 

A multiple s i t e  e f f ec t  i n  the matrix a l so  

As w i l l  

-1 

The absorptions assigned t o  FCO i n  Table I a l l  diminish i n  in t ens i ty  

and ult imately disappear when the sample is warmed t o  a temperature a t  

which diffusion can occur i n  the matrix, whereas the absorptions aeeigned 

t o  and t o  F2C0 change r e l a t i v e l y  l i t t l e .  The F2C0 absorption a t  

1941 cm-l diminishes markedly i n  in t ens i ty  during the  wanmrp operation, 

while the absorption a t  1913 cm grows. Presumably t h i s  anomaly occurs 

as  a r e su l t  of changes i n  v ibra t ion  frequencies of the F2C0 molecule 

on going from an isolated t o  an associated state. 

-1 

Table I1 gives the time dependence of the op t i ca l  dens i ty  of 

I 

- -1 
. I  
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t-N2F2 and of the two more intenee absorption paire asaigned t o  F 12 CO 

13 13 and F CO f o r  a t h in  film of CO (56% CO)rt-N2F2 = 125. 

eample was used i n  t h i s  experiment, the FCO abeorptioa near 626 cm"' 

Becauee a s m a l l  

and the (FC0)2 and F2C0 abeorptione were not euf f ic ien t ly  intense for  

inclusion i n  thio table,  Figure 2 show8 the reeul t ing absorption 

pat tern a f t e r  photolysis of a thicker depoeit of CO (56% 13 CO):t-N2F2. 

Table 11 and Figure 2 demonstrate that the 1018 (995) and 1855 (1814) 

cm -1 absorptions a re  contributed by a epecies containing one carbon atom, 

and Table I1 show8 that  t h i s  species is i t e e l f  subject t o  photolytic and/ 

or chemical procesees which prevent an indef in i te  buildup in  its con- 

centration. When thio eample wae subjected t o  prolonged photolyais, 

beyond the period reported i n  the table,  the peaks aaeigned t o  (pcO)2 

and t o  F2C0 contimed t o  grow fn intensity.  In Fig. 2, the intenei ty  

pa t te rn  

ta in ing  

intense 

i n  t h i s  

i n  a CO 

of the 620-626 cm-' pair  is also 

one carbon atom, except tha t  the 

-1 than tha t  at 626 cm . However, 
7 ' )  1L 

appropriate t o  a species con- 

620 CUI"' peak i e  s l i gh t ly  more 

appreciable F2C0 was produced 

A L  AV -1 experiment, and Fg C 0 has a medium-intensity peak a t  620 cm 

matrix. bn experiment on A r r C O  (56% I3CO):t-N2F2 = 100:2:1 in 

which very l i t t l e  FCO OY 

wae obtained ahowad that  the 13C s p l i t t i n g  of t h i e  620 cm-l peak i s  l ee s  

than 2 or 3 mum1. 

wao produced but a high yield of F2C0 

T ~ u E ,  the s l i gh t ly  greater intenei ty  of the 620 cm'l 

peak i n  Fig. 2 may well be due t o  contributiorm by F2l2C0 and F2I3CO, 

Table I11 eummarizee the feature8 which have been observed i n  etudiee 

of the photolyeis 

or t o  90% l2C1*O. 

13c160 

The eample of 12Cx80 WUE too muall to permit observation 

of t-N2F2 i n  ordinary CO and i n  CO enriched t o  56% 

7 
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of weaker features ,  such a s  the absorption ant ic ipated for  F I 2 C I 8 O  i n  

-1 the  6101620 cm region. A de ta i led  assignment of the featurea appearing 

i n  the  isotopical ly  subst i tuted systems is not attempted i n  Table 111, 

except for the designation of the frequencies appearing for  F2I3CO i n  t 

the A r  !CO (56% l3CO) t t-N2F2 experiment mentioned above. 

Although most of the experiments here reported have used the photo- 

l y s i s  of t-N2F2 a s  the source of F atoms, the features  ten ta t ive ly  as- 

signed t o  FCO also appear when a CO:F2C0 mixture i s  subjected t o  pro- 

longed photolysis, and features  assigned both t o  HCO and, t en ta t ive ly ,  

t o  FCO appear when a COtHCOF mixture is photolyzed. The l a t t e r  system 

has the advantage of minimizing the production of npecies containing two 

F atoms. 

assigned t o  FCO are  observed i n  t h i s  system. 

In f ac t ,  only the features  due to  HCO and those ten ta t ive ly  

A s  in the CO matrix experiments, a l l  of the spectroscopically 

observable products i n  three-component systems, with an Ar m a t r i x ,  appear 

t o  involve F and CO, 

assigned t o  (FCO)2 appear weakly, i f  a t  a l l .  

anticipated a t  the comentratione of CO (near 1%) employed i n  the three- 

component experiments. 

observed following the photolyaio of Ar:CO:OF2 mixtures, 

several  of the features  appearing after photolynis, including the 1913- 

1941 cm"' Fermi resonance pa i r  of F 2 C 0 ,  a r e  doubled. 

The absorptions a re  somewhat broader, and bands 

This behavior i s  t o  be 

The features  a t t r ibu ted  t o  FCO have a l so  been 

In an Ar matrix, 

P r i o r  t o  photolysis,  the COtt-N2F2 r m p l e s  mad for the  u l t r av io l e t  

attudias displayed a strong, aontinuoun absorption a t  wavelengths shorter  

than 2400 A, and absorbed wsakly toward longer wcfvrlengthm. mere war 

8 
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no indicat ion of any d iscre te  s t ructure  in the absorption over the range 

1700-3600 A. After a tenlninute photolysis period, a s e r i e s  of bands could 

be observed in the region 2200-3400 A. Continued photolysis produced a 

growth i n  the in t ens i ty  of these bands, but a f t e r  about two hours of 

photolysis t h e i r  i n t ens i ty  had v i r t u a l l y  "levelled off', the  strongest 

bands having s e w h a t  lens than 20% abaorption, 

t ha t  of  the  infrared absorptions ten ta t ive ly  assigned to  FC0;the con- 

This behavior pa ra l l e l s  

centrat ions of and of Pic0 have been found t o  increase s t ead i ly  

upon prolonged photollyeis , 

The 2200-3400 A system consis ts  of a series of f a i r l y  regular ly  

The bands are f a i r l y  spaced bands showing rlowlyvarying intensi ty ,  

broad, with half- intensi ty  widths i n  the range 250-400 cm'l. As i s  

usual for matrix observations, no indicat ion of any structure could be 

observed i n  any of the bands, but the shape of a number of the bands was  

somewhat asymmetric, with a tapering off toward shorter wavelengths. The 

wavelengths of the  maxima of the observed bands are l i e t ed  i n  Table IV, 

The pr inc ipa l  progreasion appears t o  have a spacing of approximately 

650 mu-', I n  addition, most of the more interne peaks are  accompanied 

by a secondary peak about 240 cm'l to  the  short  wavelength s ide  of the 

main peak. 
m a t r i x  

may play an important ro l e  in t h e i r  analysis. On the other hand,/shifts  

of t he  order of 200-300 cm-' are common in u l t r av io l e t  observations, and 

mese  secondary peaks may p e r s i s t  in gas phase s tudies  and 

i t  is a l s o  conceivable that  t h i s  secondary sequence i s  re la ted  t o  the 

occurrence of multiple sites. 

Supplementary u l t r av io l e t  observations were made on EFCO and on 

9 



FZCO i n  the gas phase and i n  a CO matrix. The HFCO spectrum, which has 

been studied i n  the gas phase by Giddings and I n n a ~ " ~ ) ,  shaws a very 

complex system of absorptionr between 1850 and 2600 A, There is no 

s imi l a r i t y  between the HFCO spectrum and the newly observed system. The 

gas phase (15 cm, path length, 4 m. p a r t i a l  prersure F2C0 i n  CO) u l t ra -  

v i o l e t  rpectrum of F2C0, previously unreported, exhibi ts  a group of 

f ive  bands, shaded t o  longer wavelengths, between 1800 and 2100 A. 

obselved F2C0 bands are  l i s t e d  i n  Table V. 

wavelength etandards i n  t h i s  experiment, the wavelength accuracy i n  

I 

. 
The 

&cause of a lack of good 

Table V is  approximately& 5 A, although the r e l a t ive  pooitions a re  

probably correct t o  within 1 A. In  a CO matrix, the absorptions of HFCO 

and F2C0 showad no discre te  band s t ructure ,  but exhibited continuous 

absorption a t  wavelength6 ohortar than 2300 A. 

DISCUSSION 

It has been noted tha t  the  in t ens i t i e r  of the absorptions appearing 

a t  1855, 1018, and 626 tncrease samewhat more s l m l y  than do the 

in t en r i t i e s  of the other product absorptionr when a typical  sample is 

subjected to  prolonged photolymis. Thus, it is muggeited tha t  thelre 

featureo may be contributed by a single species. 

626 cmnl feature t o  F2C0, which has a gas phare absorption a t  t h i s  

frequency, has been precluded by the observation of the corresponding 

F2C0 absorption a t  619.5 cm The disappearance of the 

three absorptionr during the warmup operation confirnu thefr assignment 

t o  a single epecies a d  indicates that  t h i8  species i e  highly reactive.  

Since these features appear in several  syrtemr (e.g,, COzF2C0,  CO:RFCO, 

The arsignment of the 

-1 i n  a CO m a t r i x .  

10 



and Ar:COrOF2) i n  which no nitrogen i~ present ,  the species  which con- 

t r i bu te s  them cannot contain nitrogen. 

of HFCO is especial ly  suggestive that they r e s u l t  f r m  a species con- 

ta in ing  only one F atom. Their appearance when F2C0 is photolyzed a l s o  

suggests t ha t  only one F atom is involved; it would be ant ic ipated that  

a C-F bond would undergo photolytic rupture more readi ly  than the C=O 

bond, and HCO is known t o  be produced i n  the photolysis of H2C0. 

Because each of these features  appears i n  the 56% 13C0 matrix experi- 

mente, paired w i t h  a set of features of approximately equal in tens i ty  

a t  somewhat lower frequenciee, the species must contain one and only one 

Their appearance upon photolysis 

carbon atom, 

of a frequency s h i f t  f o r  the two higher frequency features  i n  the 90% 

C 0 experiment. In  summary, a l l  of the  experimental evidence is con- 

s i s t e n t  with the assignment of the  1855, 1018, and 626 cm-' features  t o  

The presence of oxygen is demonstrated by the  observation 

18 

the  C-0 s t re tching mode, the C-F s t re tching mode, and the bending mode, 

respect ively,  of the  f ree  rad'ical PCO. 

Structure ,  Force Conetants, & Thermodynamic Properties of FCO 

Since no s t r u c t u r a l  data  have previously been obtained for  FCO, 

it is necessary t o  assume su i tab le  geometric parameters i n  order t o  

estimate force conetante for  t h i s  species. The infrared spectrum at- 

t r ibu ted  t o  FCO has several  points of close s imi l a r i t y  t o  t ha t  of the 

more famil iar  species HFCO. Thus, it seems reasonable t o  aseume tha t  

the  two bond lengths a re  the game a8 those determined fo r  HFCO (i.e., 

r = 1.34 A, rCO = 1.18 A)'"). The semiquantitative arguments of CF 

s u g g e ~ t  that  the  valence angles of FCO, HCO, and NO2 should be (12) Wa l6h 

11 



have found a valence angle 
(13) comparable. Ritchie , Walsh, and Warsop 

of 134O for NO2, while Johna, Priddle, and RarPsay (I4) have found HCO 

t o  have a ground e t a t e  valence angle of 119.5'. 

derived assuming a C-H bond dir tance of 1.08 A. 

This l a t t e r  value was 

However, there  is 

reason t o  believe tha t  the C-H bond in HCO is In view of 

4 

the  e imi la r i ty  between the infrared spectrum of FCO and tha t  of HFCO, 

i t  may a lso  be s igni f icant  t o  note tha t  the FCO angle in HFCO has been 

found by Mil ler  and C u r l  (11) t o  be 122.8'. 

uncertainty in the  estimate of the FCO valence angle, a y a t i m a t e  of the 

Although there  is considerable 

force constant8 of F C O  appeara t o  be feas ib le ,  since force constants 

and infrared absorption frequencies are not highly sens i t i ve  t o  geometric 

parameters. 

Table VI m m a r i z e e  the valence force constants calculated fo r  FCO 

using the bond distances found for  HFCO and a valence angle of 135'. 

Because it has been found tha t  the approximate separation of the 1855 cm -1 

frequency is not too sat iefabtory,  it has been necessary t o  solve the 

unfactored secular determinant fo r  the three force conatants. The form 

of the secular equation used for  these calculat ions is tha t  derived by 

Ruth and Phil%ppe(15 I ,  i n  which a l l  but one of the force constants is 

eliminated, reaul t ing  in a polynomial with terms up t o  the s i x t h  power 

i n  t h i s  force constant. The CEO s t re tchfng  force conotant was chosen 

for  this expreeeion, and roote of the equation lying between 12.0 and 

15.0 mdyn/A, the  range in which this force constant expected t o  

occur, were sought uriug a successive apprnxknation procedure. Only 

one value, 12.82 mdyn/A, w a s  found t o  s a t i s f y  the equation within t h i s  

12 
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range. 

were obtained uring the expreaeions for  there summarized by Ruth and 

Philippe. When a valence angle of 120‘ warn chooen and the procedure 

Given thia  value, the other two force constants of Table VI 

repeated, a value for the C=O etretching force constant of 13.28 mdyn/A 

wae obtained, but the C-F etretching force conatant was  exceptionally 

large. 

t h a t  the valence angle of F C O  is near 120°, rince tha actual  bond 

However, thia  inconeiatency need not exclude the poss ib i l i ty  

distances of FCO may d i f f e r  somewhat from thare assumed o r ,  an even 

more l i ke ly  po r r ib i l i t y ,  the arsmed valence force potent ia l  may be 

inadequate. 

The 8tretching force constants for FCO given in TabIe V I  compare 

qui te  c losely with those obtained for FZCO by Operend and Scherer (16 1 . 
However, the values given for  this  l a t t e r  molecule were based on a 

Urey-Bradley force f ie ld .  

of the nonbonded F a t m e ,  the FCO bending conetant for  F2G0 i s  not 

e n t i r e l y  comparable t o  that  obtained from a rrimple valence force f ie ld .  

Thus, i t  i s  not feaeible to  compare the bending force conatante. 

ment between the force constants calculated fo r  F C O  and those obtained 

by Morgan, S t a a t s ,  and G o l d ~ t e i n ( ~ )  for HFCO is a180 reasonably good. 

Hawever, comparison of the C=O stretching force constants of HCO and 

Because of the r e l a t ive ly  great interact ion 

Agree- 

bf FCO suggest8 tha t  the p a r t i a l  t r i p l e  bond character of the carbonyl 

bond of HCO does not have i t a  analog i n  KO. 

C-H e t re tching force constant of HCO has been found(2) t o  be unusually 

Similarly, although the 

small, the C-F s t re tching force constant of FCO i e  quite comparable to 

tha t  i n  other moleculee . 
13 



Util iz ing the force constants of Table V I ,  the  frequencies s u m m a r i m  

zed i n  Table VI1 have been calculated f o r  FI3Cl6O and fo r  F C 0. Con- 

s ider ing tha t  a l l  of the geometric parametere for  FCO were  assumed and 

tha t  the O,,,F in te rac t ion  w a s  neglected, the agreement appears t o  be 

12 18 

reasonably good. 

D e s p i t e  the uncertainty remaining i n  the geometric parametere of 

FCO, an estimate of the thermodynamic propertiee of t h i s  species appears 

t o  be feasible ,  since these properties are not highly sens i t ive  t o  

molecular dimensions. For example, if the  FCO valence angle is as  low 

as 120°, the  values of -(Po - Hz)/T and of S o  given i n  Table VI11 would 

each be increased by 0.31 cal/mole-°K, compared t o  the values tabulated 

for  135". 

Electronic Transit ions of FCO 

The values of C" and of (Ho - Hg)/T would not be changed. 
P 

The most prominent sequence of the  observed u l t r a v i o l e t  band 

system, a t t r ibu ted  t o  FCO, contains some eighteen bands with a f a i r l y  

regular spacing of approximately 650 c m  

an as te r i sk  i n  Table IV.) 

t r ibuted e i t h e r  t o  the upper s t a t e  C-F s t re tch ing  mode or t o  the upper 

-1 . (Note the  bands marked with 

Thie progression conceivably could be a t -  

s t a t e  bending mode. However, analogy with the behavior of re lated 

e 

molecules, including HCO and CF2, and conuideration of the molecular 

orb i ta l s  most  l i ke ly  t o  be concerned i n  the t r ans i t i on  both suggest 

tha t  most probably a long progression i n  the upper state bending mode 

should occur. 

Johns, Priddle,  and Ramsay (14) have found tha t  the abeorption 

system of HCO between 7500 and 4500 A should be assigned t o  a 2A'111 - 2A' 
14 
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t r a n s i t i o n  involving the promotion of the  unpaired electron,  largely 

localized on the C atom i n  the ground s t a t e ,  t o  a higher orb i ta l .  In  

this t r ans i t i on  the  HCO valence angle goes fram approximately 120" t o  

180' i n  the upper s t a t e .  The C=O and C-H bond lengths appear t o  change 

r e l a t i v e l y  l i t t l e  i n  t h i s  t rans i t ion ;  most of the bands can be assigned 

t o  a progression i n  the upper s t a t e  bending frequency. Because pre- 

d i ssoc ia t ion  can occur for  t h i s  species,  a l t e rna te  t r ans i t i ons  ( to  vi = 

2x1, n an integer)  a r e  d i f fuse ,  SplittLngs due t o  the Renner e f f ec t  

are a l so  found t o  play an important r o l e  i n  the analysis  of the pro- 

greesion i n  v2. t 

Walsh (12) has predicted that  the haloformyl rad ica le ,  XCO, should 

behave qui te  s imi la r ly  t o  HCO. The ground s t a t e  of each of these species 

is predicted t o  have the unpaired e lec t ron  la rge ly  localized on the C 

atom. In  each case one of the lowest allowed e lec t ronic  t r ans i t i ons  

should involve promotion of the unpaired electron t o  a higher o r b i t a l  

of a'' symnetry, which cor re la tes  with the same IT state fo r  the l inear  

molecule as does the ground s ta te  o r b i t a l  of t h i a  electron. F.or HCO 

t h i s  t r ans i t i on  causes the molecule t o  become l inear .  However, Walsh 

predic t s  t ha t  fo r  XCO t h i s  higher o r b i t a l  may s t i l l  favor a bent mole- 

cule,  although the valence angle should be considerably la rger  than i n  

the ground s t a t e .  

frequency i s  predicted,  although the complication8 of predissociat ion and 

Thus, a long progression i n  the upper state bending 

of t he  Renner e f f e c t  may or may not be present i n  the upper state of XCO. 

Because of the added molecular o r b i t a l s  when an F atom is sub- 

s t i t u t e d  f o r  an H atom, still othar low-lying electronic  t r ans i t i ons  

15 
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achanimn of the Reactions Occurrinq in the Matrix 

L i t t l e  is known regarding the detai led mechanism of the photo- 

chemical decomposition of the F atom precursors ured for  the present 

experiments. Reactions (1) t o  (3) represent the possible modes by which 

F a t o m  may be produced on photolye18 of t-N2F2: 

t-N2F2 9 hv + Np + F2 ( l a )  

F2 + hv -t 2F (Ib) 

t-N2F2 + hv 4 FN2 + F (2 1 

t-N2F2 hV N2 +. 2F (3) .  

If  the primary photolytic process i o  that  of Reaction ( la) ,  it is 

necessary that  Reaction (lb) occur very readi ly  i n  the matrix environ- 

ment, since Tables I and I1 give no h i n t  of an inductian period fo r  the 

formation of FCO i n  the system COzt-N2F2. 

the F atoms a l so  somewhat diefavors the occurrence of Reaction ( la) .  

The trana configuration of 

The production of alkyl  rad ica ls  when the azoalkanes a re  photolyzed 

a l so  suggests tha t  Reaction (2) or (3) is more l ikely.  It is, however, 

more d i f f i c u l t  t o  distinguish between these two poss ib i l i t i e s .  Appa- 

ren t ly ,  ineuff ic ient  FN2 is stabi l ized i n  the matrix t o  permit observa- 

t i o n  of i ts  infrared spectrum. Hawever, t h i s  species may undergo 

unimolecular decomposition o r  may photolyze very readily.  I f  i t  is 

present,  one might expect tha t  recombination of the molecular fragments 

within the "cage" might lead t o  the appearance during the course of 

photolysis of some c-N2F2. Supplementary observations indicate tha t  

t h i a  species photolyzes i n  an Ax matrix a t  a r a t e  comparable t o  tha t  

obaerved for  t-N2F2. 

the productian of a r ign i f icant  concentration of c-N2F2. 

However, there i 8  no spectroscopic evidence for  

Although theme 

1 7  



observations may be interpreted as favoring Reaction (3) ,  they do not 

exclude the poss ib i l i t y  tha t  the primary photolytic proceee i a  tha t  of 

Reaction (2). 

Once produced, F a t m  apparently can undergo limited diffusion in 

the matrix. 

is present 

These atoms may react with CO (Reaction (4)) even when CO 

F + CO FCO (4 ) 

i n  r e l a t ive ly  emall concentration i n  an A r  matrix. 

s ignif icant  act ivat ion energy i s  required f o r  the react ion of H atoms 

with CO, there does not appear t o  be an appreciable ac t iva t ion  energy 

required for Reaction (4). Especially i n  the  CO matrix, it is l i ke ly  

tha t  t h i s  react ion occurs i n  s i t e s  near those i n  which the F atoms are 

produced. Since the uaual F atom precursors for  these experiments 

Thus, although a 

possess  two 

even in the 

Because FCO 

F atume, Reactions (5) and (6) a l so  occur qui te  readi ly  

ea r ly  stages of photolyeis. 

FCO + FCO -+ (FCO)2 . ( 5 )  

FCO + F -, F2C0 

would d i f fuse  only with d i f f i c u l t y  i n  an Ar or a CO matrix 

a t  14’K, and because the diffusion of CO i s  a l so  inhibited i n  Ar matrices 

a t  14”K, it is l i ke ly  that  Reaction (5) occura primarily by the combi- 

nation of FCO radicals  i n i t i a l l y  formed on adjacent e i t e s .  The f a i lu re  

to  observe the production of appreciable (FCO)p i n  the A r  m a t r i x  experi- 

ments is i n  accord with t h i s  hypothesis. 

( 6 )  is not inhibited i n  the Ar matrix, since it  would require  only the 

diffusion of F atoms. 

On the other hand, Reaction 



? .  

The observation of Reaction (7), the reverse of Reaction (6), i s  of 

F2C0 + hv 4 F C O  + F (7 1 

some fur ther  i n t e re s t .  This photolytic react ion occurs r e l a t i v e l y  slowly, 

exc ludhg the poss ib i l i t y  t ha t  FCO is produced by the react ion of F2, 

produced by Reaction (l), with CO (Reaction (a)), followed by the 

F2 + CO -+ F2C0 (8 

photolysis of F2C0. 

i n i t i a l  formation of FCOwhen OF2 o r  t-N2F2 is used a s  the F atom pre- 

cursor .I 

Therefore, F atoms must play a major ro l e  i n  the 

In summary, although the  d e t a i l s  of the photolytic decomposition 

of F atom precursors such as t-N2F2 have not yet been completely clari- 

f i e d ,  consideration of the l i k e l y  reactions of F atoms and of FCO 

rad ica ls  i n  the present experiments can account f o r  a l l  of the observed 

products. 

CONCLUSIONS 

The v ibra t iona l  fundamentals of FI2CI60 have been obeenred i n  a 

matrix emrironment a t  626,  1018, and 1855 cm'l. 

I3C and l 8 O  subs t i tu t ion  confirm these r e su l t s .  

extensive react ion,  F2C0 and (FC0I2, have a l so  been observed, although 

the  production of the la t ter  is inhibited when an Ar matrix is  employed. 

The C-F and C=O s t re tching force constants derived frcnu the infrared 

Observations involving 

The products of more 

da t a  f o r  FCO a r e  comparable t o  those reported for  more s tab le  moleculee. 

An u l t r a v i b l e t  absorption system extending between 2200 and 3400 A can 

be assigned t o  FCO. 

proximately 650 cm-l, appears t o  be associated with the  upper s t a t e  

The principal  progreesion, with spacings of ap- 

bending mode of t h i s  species. However ,  a de f in i t e  aes igwent  of t h i s  

19 



t r ans i t i on  m u s t  await gas phaEe s tudies .  The 1800-2100 A band system, 

with spacings of approximately 1700 an-', which has been observed i n  

supplementary s tudies  on gaseous F2C0 appears t o  be associated with 

t h e  n -+ TT t r ans i t i on  of the carbonyl group of F2C0. A consideration 

of the  possible reactions o f  F atoms, C O ,  and FCO can account for  a l l  

of the product8 observed i n  the present experiments, 

%- 

20 
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Table f 
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TIM3 DEPENDENCE OF OPTICAL DENSIT3ces 

C O t t r N 9 2  250; 12.8 p a l e  t-N2F2 

fi9cPncY Duration of Photolysis Assignment 

<a+> o min. 10 min. 20 min. rlo min, 

626 

676 

764 

804 

966 

980 

1018 

1082 

llo1 

1239 

1268 

1275 

1855 

1863 

1888 

1913 

19U 
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Table If 

TIM3 DEPENDENCE OF OFTIGAL DENSITIJS 

(56% 13co)SbN& = 125; 6.0 p o l e  t-N2F2 

Frequency Duration of Photolysis Assignment 

( -1) 0 min. 10 min, 40 mine 80 min, 
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Table I11 

I '  
I .  

: 
i 

* -  

I .  
626 

676 

761, 

966 

101s 

1082 

loqo W 

1101 

620 

626 

670 sh 

673 

676 

731 

7AO * 
763 

942 v 

962 

945 

995 

1018 

lo55 

1068 

1074 

1081, 

1089 

1101 

950 

1016 

1080 w 

1098 

FCO 

FZCO 

FCO 



Table III-Continued 

l2CUO (90%) (for 'ssif!g!g) 
1204 * 
1208 sh 

1216 w 

1235 

1239 12110 

1253 

1268 

1276 w 

1240 

1268 1268 

1276 

1813 

1822 

1823 1828 

1841 1849 

1855 

1863 

1855 1854 w FCO 

1862 

1866 

1875 * 

( m 2  

1868 w 

1876 

1888 1887 

1913 1912 

1941 1940 

13 16 * Irrdependently determined to be contributed by F2 C 0. 
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Table IV 

WAVELENGTBS OF MAXIMA OF niE OLTRBVIOIET BANDS OF FCO 

Relative 
Intensity 

5 

15 

10 

25 

20 sh(b) 

30 

15 sh 

40 

20 sh 

60 

20 sh 

50 

15 sh 

65 

30 sh 

70 

30 sh 

90 

90 

100 

45344.08 

u879.4 
44557.1c 

U298.7 * 
43915 * A  

43673.7 * 
43284.2 

43042.0 * 
42817.1 

42437.2 * 
42028+7 

41793.3 * 
4l402.1 

4J-153.3 * 
40764.0 

40503ol * 
4m53e6 

39858.8 * 
39216.2 * 
38559.8 * 
38165 .3 

631 +7 

604.5 

643.9 

640.0 

650 2 

644+3 



50 sh 

100 

25 sh 

90 

25 sh 

90 

70 

65 

70 

A5 

60 

75 

70 

75 

40 

60 

35 

55 

55 

25 

35 

30 

2628.1 

2637.6 

2668.0 

2684.1 

2718 e 5 

2733 e 1  

2782.8 

2837 07 

2891.4 

2928 e9 

2947.8 

2990.8 

3013 e 3 

3053.2 

3081.6 

3119.5 

3163 e 7  

3187 .O 

3231 2 

3269.9 

3305 e 8  

3348 e 0  

667 e 7  

653.3 

694.9 

654.3 

661 e 5 

Difference between adjacent starred frequencies, 
sh deslgtlates a weaker band that appears as a shoulder or satellite 
toward the short wavelength of a major peak. 

(b) 
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Table V 

ABSORPTION SPECTRUM OF GASEOUS pZc0 

100 

75 

60 

50 

20 

2062 

1992 

1927 

1867 

1812 

u495 

50200 

51895 

53560 

55190 

1705 

1695 

1665 

1630 



Table VI 

FORCE CONSTANTS (dsn/a) FCR PCO AND RELATED SPECDES 

HCO Hpco FZCO lEO* 

u.07 11.34 12.85 12.82 kco 
%F 

kFC0 

e.... 4.76 4.53 4.55 

...e. 1.43 ..... 0.94 
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Table V I 1  

CALCULATED* AND OBSERVED FReQUENCIES FOR ISOTOPICALLY SUBSTITUTED FCO 

S p e c i e s  (cm- ) 'oba 

12 16 F C O  

13 16 F C O  

12 18 F C O  

1855 

1018 

6 26 

18 14 
995 

620 

1813 

1016 
* .... 

.... 

.... 

.*.. 
18 10 

991 

622 

18 18 

1013 

6 12 

~~ ~~~~ 

* 
Assuming rco = 1.18  A ,  rCF = 1 . g  A ,  and <FCO = 135'. 
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Table VI11 

THERMODYNAMIC PROPERTIES OF FCO ( c a l / m o l e - ' K )  
0 0 

assuming rco = 1.18 A ,  rCF = 1.34 A ,  and <FCO = 135' 

C 0  
P 

Ho - Hg 
T 

S O  

273.16 9.10 8.26 

298.16 9.32 8.3k 

3 00 9.33 8.34 

400 10.12 8.69 

5 00 

6 00 

7 00 

8 00 

900 

1000 

1100 

1200 

1300 

1400 

1500 

2000 

3000 

10.78 

11.32 

11.76 

12.11 

12.39 

12.62 

12.80 

12.95 

13.07 

13.17 

13.26 

0 . 5 2  

13.73 

9.04 

9.38 

9.69 

9.97 

10.22 

10.45 

10.66 

10.84 

11.01 

11.16 

11.30 

11.82 

12.43 

50.29 

51.01 

51.06 

53.51 

55.49 

57.17 

58.63 

59.95 

61.13 

62.22 

63.23 

64.16 

65.04 

65.86 

66.64 

69.96 

74.88 

58.54 

59.35 

59.40 -~ 
62.20 

64.53 

66.55 

68.32 

69.92 

71.36 

72.68 

73.89 

75.01 

76.05 

77.02 

77.93 

81.78 

87.31 
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Figure 

C0:t-N2F2 

1 

= 140 

9.2 p o l e  t-N F before  photolysis 2 2; 

--- 19.1 p o l e  t-N2F2; 15 min. photolysis 

- - - -  28.3 p o l e  t-N F 20 min. additional 2 2; photolysis 



I .  

b 

' .  . 

G 

I- 

I -  

- -i 
-7 

NOlldtlOSW - 



Figure 2 

co (56% CO):t-N2F2 = 200 1 3  

23.1 pole t-N2F2 

simultaneous deposition and photolysis, over course of 100 min. 
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